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Abstract. To reach the goals laid out by the U.S. Government for displacing fossil fuels with
biofuels, high-biomass sorghum is well-suited to achieving this goal because it requires less
water per unit dry biomass and can produce very high biomass yields. In order to make biofuels
economically competitive with fossil fuels it is essential to maximize production efficiency
throughout the system. The goal of this study was to use remote sensing technologies to
optimize the yield and harvest logistics of high-biomass sorghum with respect to production
costs based on spatial variability within and among fields. Specific objectives were to compare
yield to aerial multispectral imagery and develop predictive relationships. A 19.2-ha high-
biomass sorghum field was selected as a study site and aerial multispectral images were acquired
with a four-camera imaging system on July 17, 2009. Sorghum plant samples were collected at
predetermined geographic coordinates to determine biomass yield. Aerial images were processed
to find relationships between image reflectance and yield of the biomass sorghum. Results
showed that sorghum biomass yield in early August was closely related (R2 = 0.76) to spectral
reflectance. However, in the late season the correlations between the biomass yield and spectral
reflectance were not as positive as in the early season. The eventual outcome of this work
could lead to predicted-yield maps based on remotely sensed images, which could be used in
developing field management practices to optimize yield and harvest logistics. C© 2011 Society of

Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3586795]
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1 Introduction

Agricultural production of dedicated biomass crops is a required part of the objective of displac-
ing fossil fuels with renewable energy. Relative to other crops, sorghum is an excellent choice
for dedicated biomass production because it requires less water per unit dry biomass and can
produce very high biomass yields. There remains a great need for technologies that will enable
production of high-biomass sorghum at as low a cost as possible. Without these technologies,
history dictates that this energy source will not be competitive with other energy sources.

One of the problems is that energy density in biomass is low relative to fossil fuels, so
large production savings are essential. This economic obstacle may be overcome by optimizing
yield and harvest logistics with respect to production costs based partly on spatial variability
within and among fields. One optimization technique that has proven viable in commercial
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crop production is remote sensing (RS), which enables a large volume of data about a crop
to be gained inexpensively over a large area. RS has been used in crop production to develop
application maps for crop inputs, the use of which has in some cases reduced the amount of
chemicals applied and the expense associated with them.

Some broad-scale predictive studies of RS relative to bioenergy have been conducted to
assess land-cover type and biomass density concerning the utilization of forests as a biomass
source. However, it is important to look at field studies in which a dedicated feedstock is
produced. We must know whether a crop that produces a large amount of biomass can be
produced inexpensively enough to make it worthwhile as an energy source. Minimizing costs at
every link in the supply chain is critical, and RS is a tool for optimizing the yield-to-input ratio
on a spatially variable basis.

The use of RS in agriculture is based on relationships between crop biophysical phenomena
and their spectral signatures. RS has been used in water management, yield prediction, nutrient
management, and pest management in a number of crops.1 In sorghum, spectral and thermal-
infrared data have been used to accurately model grain yield, and generalized relationships
across multiple years and locations have been developed.2,3 RS water stress indices have been
found useful in optimizing irrigation strategies for sorghum.4 Satellite imagery has been used
to accurately estimate leaf area index in sorghum.5 Microwave RS has been used to estimate
sorghum chlorophyll content, which was highly correlated with the occurrence of pests.6 RS and
yield monitor data have been used to map sorghum plant growth and yield variability, indicating
that RS could be used to correct problems in these areas.7

Spectral reflectances from image data have often been used to calculate vegetation indices.
Normalized difference vegetation index (NDVI) is one of the vegetation indices that have
been commonly used in remote-sensing applications in agriculture.8–12 Other vegetation indices
including reflectance band ratios and individual band reflectance have also been employed for
crop management and yield prediction.7,12–15

The literature has clearly shown that RS is promising for many aspects of sorghum produc-
tion management such as yield prediction, irrigation scheduling, and pest management. Earlier
studies on the relationships between the plant canopy spectral and thermal features and physio-
logical characteristics have provided solid fundamentals upon which further research can build.
However, using RS in high-biomass sorghum presents several challenges. While traditional
sorghum production is concerned with maximizing grain yield, the goal with high-biomass
sorghum is maximizing total biomass. Thus, procedures in the literature that relate plant spectral
features and various stress indices to grain yields will require re-examination and refinement.
For farmers who might plant high-biomass sorghum, this study can give them tools for timely
and site-specific evaluation of the health status of their crop and prescriptions for variable-rate
applications of crop inputs that could greatly reduce their input costs. Furthermore, the ability
to predict the biomass yield within a field or a group of fields can provide great advantages
in terms of scheduling fleets of harvesting machinery, transport vehicles, and storage facilities.
This issue is a very costly part of the production process, and its importance should not be
underestimated.

The overall goal of this research was to use RS in developing high-biomass sorghum produc-
tion methods that are as low-cost as possible in terms of crop inputs, and harvest and transport
expenses. The specific objective of the study reported in this article was to estimate yield of
high-biomass sorghum with aerial multispectral RS imagery.

2 Materials and Methods

2.1 Study Site

A 19.2-ha sorghum field (96.431685◦W, 30.530911◦N), located at the Texas AgriLife Research
Farm in Burleson County, Texas, was selected as a research site. Two varieties of sorghum were
planted on May 7, 2009. Ceres ES 5150, identified as a Sudan sorghum, was planted on 9.1 ha,
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Fig. 1 Sampling location IDs superimposed on a color-infrared image of the high-biomass
sorghum field.

and Ceres ES 5200, identified as an energy sorghum, was planted on 10.1 ha. The predominant
soil type in the field is Belk clay (BaA), 0% to 1% slope, rarely flooded. The following are two
other significant soil types in the field: Weswood silty clay (WwA) loam, 0% to 1% slope, rarely
flooded, and Yahola fine sandy loam (YaB), 0% to 2% slope, rarely flooded. About five-sixths
of the field was irrigated by a central pivot irrigation system and the rest was rain-fed. The field
was further split into two different row spacings, 0.19 and 0.57 m.

A soil-EC map of the field was used to identify areas of different soil characteristics.
Sampling points were chosen to obtain adequate field representation based on variations in
soil electrical conductivity (EC) and irrigation, and biomass yield and quality variability were
the primary output considerations. Twenty-four points within the field were chosen as initial
sampling locations; point IDs were 8 to 19 and 27 to 38 (Fig. 1). Properties at each location are
given in Table 1.

2.2 Harvesting and Sampling

A related research project was conducted at the same time with the objectives of determining
optimal harvest time and developing appropriate logistic strategies for sorghum biomass han-
dling. Sorghum biomass was harvested multiple times from late July 2009 to January 2010.
Four of these harvests, from late July to early November, 2009, were included in this research.
The area harvested during each of the four harvests included 6 of the 24 sampling locations.
The first harvest (1.98 ha, sampling locations 14 to 19) was conducted from July 29 to August
6 (referred to as early August). The second harvest (1.98 ha, sampling locations 8 to 13) was
conducted from August 20 to August 27 (late August). The third harvest (4.17 ha, locations
27 to 32) was conducted from October 20 to October 30 (late October), and the last harvest
(1.25 ha, sampling locations 33 to 38) was conducted from November 6 to November 10 (early
November). In terms of variety, the variety ES 5150 was harvested in early August and late
August, and ES 5200 was harvested in late October and early November.
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Table 1 Properties of initial sampling locations.

Location ID Water Soil type Row spacing (m) Variety Harvest

8 Irrigated WwA & BaA 0.57 ES 5150 late August
9 Irrigated BaA 0.57 ES 5150 late August
10 Irrigated BaA 0.57 ES 5150 late August
11 Irrigated BaA 0.19 ES 5150 late August
12 Irrigated BaA 0.19 ES 5150 late August
13 Rain-fed BaA 0.19 ES 5150 late August
14 Irrigated YaB & WwA 0.57 ES 5150 early August
15 Irrigated BaA 0.57 ES 5150 early August
16 Irrigated BaA 0.57 ES 5150 early August
17 Irrigated BaA 0.19 ES 5150 early August
18 Irrigated BaA 0.19 ES 5150 early August
19 Rain-fed BaA 0.19 ES 5150 early August
27 Irrigated BaA & WwA 0.57 ES 5200 late October
28 Irrigated BaA 0.57 ES 5200 late October
29 Irrigated BaA 0.57 ES 5200 late October
30 Irrigated BaA 0.19 ES 5200 late October
31 Rain-fed BaA 0.19 ES 5200 late October
32 Rain-fed BaA 0.19 ES 5200 late October
33 Irrigated BaA 0.57 ES 5200 early November
34 Irrigated BaA 0.57 ES 5200 early November
35 Irrigated BaA 0.57 ES 5200 early November
36 Irrigated BaA 0.19 ES 5200 early November
37 Rain-fed BaA 0.19 ES 5200 early November
38 Rain-fed BaA 0.19 ES 5200 early November

In the first three harvests, four types of machine conditioners were used for conditioning
sorghum stover: Macdon SP Windrower with 16′ R80 Rotary Disc header (referred to as MD),
Macdon SP Windrower with 16′ A40 auger sickle cutter-bar header (referred to as MA), John
Deere SP Windrower with 14.5′ rotary disc header and impeller conditioner, and John Deere
Windrower with 14.5′ rotary disc header and tri-lobe steel conditioner. In the last harvest only
two types of conditioner (MD and MA) were used instead of four. Soon after conditioning,
sorghum biomass yield samples were taken at points around each sampling location for each
conditioner. Therefore, 24 samples (6 locations, 4 types of conditioners) were taken on a daily
basis for each of the first 3 harvests, and 12 samples (6 locations, 2 types of conditioners) for
the last harvest. On a few occasions time constraints prevented all 24 samples from being taken
during the first three harvests. For each conditioner type and sampling location, seven yield
samples were collected in the first harvest, six collected in the second, three in the third, and
two in the fourth, except for those few occasions where time was limiting.

For each conditioner type, a handheld global positioning system (GPS) receiver was used
to identify sample points around the initial sampling locations. Then the surrounding area was
observed to establish a representative portion of the windrow. Once this “average area” was
located, a wooden frame was placed over the sample area, giving an outline of the full windrow
width and 0.67 m length for cutting. After cutting around the windrow frame with an edger,
the sorghum was placed into a bag and weighed before being transported back to the lab. The
sample was ground at the lab with a chipper shredder. Subsamples were randomly collected
from the shredder collection bag until an adequate amount of biomass was retrieved, and each
subsample was frozen at −19◦C for future moisture content determination. All samples were
later dried at 105◦C until there was no measureable change in sample weight.

2.3 Image Acquisition and Processing

A high resolution, four-camera, aerial imaging system described by Yang16 was used for image
acquisition in this study. A multispectral image of the sorghum field was acquired with the
system on July 14, 2009, 68 days after planting. The system acquired 12-bit images with
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Table 2 Correlations between sorghum biomass yield in early
August and reflectance spectra of sorghum plant canopy using
multiple linear regression (n = 24).

Independent variablesa R2 Pr > F

RVI 0.710 <0.0001
NDVI 0.679 <0.0001
Red 0.586 <0.0001
NIR 0.580 <0.0001
Blue 0.317 0.0042
Green 0.136 0.0761
NDVI RVI 0.720 <0.0001
Red NDVI 0.692 <0.0001
NIR Red NDVI 0.722 <0.0001
NIR Red Blue NDVI 0.746 <0.0001
NIR Red Blue NDVI RVI 0.757 <0.0001
NIR Red Green Blue NDVI RVI 0.757 0.0002

aDependent variable is sorghum biomass yield in early August, 2009.

2048 × 2048 pixels in blue (430 to 470 nm), green (530 to 570 nm), red (630 to 670 nm), and
near-infrared (NIR) (810 to 850 nm) wavelength intervals. The multispectral image was acquired
at an altitude of 2590 m, and pixel size was approximately 1 m. The image was geo-referenced
to the UTM coordinate system with a set of GPS reference points on the ground.

Digital count values of the blue, green, red and NIR bands were extracted with a 3-pixel
× 3-pixel window centered at each of the sampling points. The values from the nine pixels
for each point were averaged for each band. The procedures for image rectification and data
extraction were performed with ERDAS IMAGINE software (Leica Geosystems Geospatial Imaging,
LLC, Norcross, Georgia). The vegetation indices, NDVI and RVI (ratio vegetation index), were
computed for each sampling point. NDVI was calculated by dividing the difference between the
NIR and red digital count values by the sum of NIR and red count values; i.e., NDVI = (NIR −
red)/(NIR + red). RVI was the band ratio of the NIR to red; i.e., RVI = NIR/red.

Yield of sorghum biomass at each sampling point was estimated with the dry weight of the
sample and the sampling area (3.066 m2). Yield estimates of each harvest were averaged by the
sampling point for each type of machine conditioner, giving 84 yield estimates including 24 in
the early August harvest (6 sampling locations × 4 types of machine conditioners), 24 in late
August (6 locations × 4 types of machine), 24 in late Oct (6 locations × 4 types of machine),
and 12 in early November (6 locations × 2 types of machine).

Vegetation indices (NDVI and RVI) and digital count values of each individual band (NIR,
blue, green, and red) were analyzed with multiple linear regression (SAS software, PROC REG
procedure; SAS Institute Inc., Cary, North Carolina) to determine the relationships between the
sorghum biomass yield and the indices and the digital count values. An analysis of variance
(ANOVA) test was also conducted to determine the effect of row spacing on NDVI.

3 Results and Discussion

Analyses were conducted to determine relationships between sorghum biomass yield and NDVI,
RVI and digital count values at blue, green, red, and NIR bands at each of the four harvests.
Results are given in Tables 2–5. Overall, the early August yield had the best relationship (R2

= 0.757) with RS data. For variety, ES 5150, RVI and NDVI were well correlated with yield (R2

= 0.710 and 0.679), and the NIR and red bands were more sensitive to yield than the blue and
green bands: this was expected from the literature. The model having the highest correlation
coefficient for each variety was selected to be used in estimating yield. Yield estimates were
plotted against actual yield (Fig. 2). Models for ES 5150 at the early August and late August
harvests performed better in predicting the yield (R2 = 0.757 and 0.647, respectively) than
those for ES 5200 at the October and November harvest (R2 = 0.450 and 0.517, respectively).
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Table 3 Correlations between sorghum biomass yield in late
August and reflectance spectra of sorghum plant canopy using
multiple linear regression (n = 24).

Independent variablesa R2 Pr > F

RVI 0.414 0.0007
NDVI 0.444 0.0004
Red 0.306 0.0051
NIR 0.479 0.0002
Blue 0.030 0.4162
Green 0.145 0.0668
NIR blue 0.511 0.0005
NIR blue NDVI 0.574 0.0006
NIR green blue NDVI 0.590 0.0014
NIR green blue NDVI RVI 0.647 0.0012
NIR green blue red NDVI RVI 0.647 0.0033
Green blue NDVI RVI 0.639 0.0004
Green blue NDVI 0.589 0.0004
Blue NDVI 0.570 0.0001

aDependent variable is sorghum biomass yield in late August, 2009.

Table 4 Correlations between sorghum biomass yield in late
October and reflectance spectra of sorghum plant canopy using
multiple linear regression (n = 24).

Independent variablesa R2 Pr > F

RVI 0.016 0.5530
NDVI 0.014 0.5796
Red 0.080 0.1793
NIR 0.011 0.6213
Blue 0.064 0.2330
Green 0.004 0.7765
Red green 0.129 0.2350
NIR red green 0.347 0.0333
NIR red green RVI 0.387 0.0449
NIR red green Blue RVI 0.435 0.0500
NIR green blue red NDVI RVI 0.450 0.0809
Red green blue NDVI RVI 0.450 0.0411
Red green NDVI RVI 0.393 0.0414
Red green NDVI 0.345 0.0340

aDependent variable is sorghum biomass yield in late October, 2009.

Table 5 Correlations between sorghum biomass yield in early
November and reflectance spectra of sorghum plant canopy us-
ing multiple linear regression (n = 12).

Independent variablesa R2 Pr > F

RVI 0.273 0.0813
NDVI 0.247 0.1001
Red 0.136 0.2374
NIR 0.270 0.0834
Blue 0.027 0.6080
Green 0.036 0.5566
NDVI RVI 0.404 0.0978
NIR red green Blue NDVI RVI 0.517 0.5610
NIR red green NDVI RVI 0.516 0.3817
NIR red green NDVI 0.513 0.2257
NIR red NDVI 0.483 0.1339
NIR red 0.283 0.2236

aDependent variable is sorghum biomass yield in early November, 2009.
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Fig. 2 Actual sorghum biomass yield versus the predicted yield for early and late August sampling
dates.

The poorer relationship between models and biomass of ES 5200 could have been caused by
harvesting date or variety or both. Figure 3 indicates that ES 5150 accumulated biomass after
the early August harvest. Average yield was 9258 dry kg/ha at early August and increased
42%, up to 13121 dry kg/ha, by late August. The date (July 14th) when the image was acquired
was closer to the date of the early August harvest, so the image was likely a better reflection
of growth status at this harvest. The ES 5200 variety was harvested in late October and early
November and yield exhibited no obvious differences between these two harvests (18,811 and
18,376 dry kg/ ha). The lesser (2.3%) yield in early November could be due to degradation of
the biomass in field.

NDVI distribution across the initial sampling locations is shown in Fig. 4. Except for location
14, which has a different soil type (WwA & BaA), the ES 5150 variety had a higher NDVI value

Fig. 3 Yield of sorghum dry biomass at initial sampling locations.
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Fig. 4 NDVI values of sorghum variety ES 5150 (location 8 to 14) and ES 5200 (location 27 to
38) on July 14, 2009.

than ES 5200. This difference likely relates to the fact that the ES 5150 had a better developed
plant canopy than ES 5200. In general, full canopy coverage benefits the assessment of plant
growth conditions with RS imagery.

Spectral reflectance from the plant canopy may have been affected by irrigation conditions
and row spacing as well. The average NDVI value (Fig. 4) was 0.42 for ES 5150 and 0.40 for
ES 5200. NDVI values in all rain-fed locations except location 19 were lower than the variety
average; thus, irrigation generally increased NDVI. Results of the ANOVA test dealing with the
effect of row spacing on NDVI indicated no significant difference in NDVI between areas with
0.57 m spacing and those with 0.19 m spacing [F(1, 82) = 1.72, p = 0.1937].

Other factors that could affect accuracy of the models in predicting sorghum biomass yield
relate to the biomass samples used to calculate the yield. One factor relates to how yield samples
were collected, and the other relates to the large amount of variability in moisture content. It
was noted during biomass harvesting that slug feeding occurred at times with the conditioning
machines. This situation was generally caused by a build-up of biomass in front of the machine
and a subsequent lack of flow followed by a larger than normal flow of biomass into a windrow.
The uneven flow through the conditioners caused unevenness in the windrows, both along the
row and across the row, in height of the windrow and density of the material within the windrow.
Selecting a representative sample of the windrow under these circumstances is difficult and prone
to error. It was also observed that after rainfall events, water tended to collect near the bottom
of the windrow. There were thus significant inconsistencies in moisture content throughout the
windrow, particularly when samples were taken soon after a rainfall event. Therefore, it was
again difficult to select a representative sample from the windrow, and the process was more
prone to error after a rainfall event.

4 Summary and Conclusion

Biomass sorghum yield was found to be well correlated with aerial multispectral imagery. Two
varieties of biomass sorghum grown in a 19.2-ha field with different growth conditions were
selected for the study. The biomass sorghum was harvested and biomass yield samples were
collected at 84 sampling points. Multispectral imagery of the sorghum field was acquired during
the growing season in four wavebands (NIR, red, green, and blue) with an aerial remote sensing
system. Relationships between sorghum biomass yield and spectral reflectance were analyzed,
and yield was closely related to the reflectance parameters (R2 = 0.757) and could be estimated
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fairly well even with a model only involving the band ratio of NIR to red (R2 = 0.710) during
the early August harvest. At the late August harvest, multiple regression analysis also indicated
a good correlation between the yield and the spectral reflectance (R2 = 0.647). Results of this
study point to the potential of using aerial multispectral imagery to estimate biomass sorghum
yield. However, to obtain a more accurate yield prediction, issues such as image acquisition
time, large variability of the biomass moisture content, and biomass yield sampling should be
properly addressed in the development of prediction models with remote sensing imagery data.

Mention of a commercial product is solely for the purpose of providing specific information
and should not be construed as a product endorsement by the authors or the institutions with
which the authors are affiliated.
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